Derivación de funciones vectoriales y sus propiedades.
- Luis
- 4 feb 2017
- 1 Min. de lectura
. Sea la función vectorial 𝐹 𝑡 entonces diremos que 𝐹 ′ 𝑡 es la derivada de dicha función y se define mediante:

PROPIEDADES Supongamos que r(t) y s(t) son funciones vectoriales derivables, que f(t) es una función escalar también derivable y que c es un escalar cualquiera, entonces:



Cuando una función vectorial definida en un intervalo abierto de R es derivable indefinidamente y su primera derivada no es nula, decimos que se trata de una curva regular. Al vector 𝐹 (𝑡) se le llama vector de posición de la curva y a los vectores 𝐹 ′(𝑡) y 𝐹 ′′(𝑡) se les llama, respectivamente, vectores velocidad y aceleración. De modo que la rapidez en un instante t es 𝐹 ′ 𝑡 , es importante observar que la rapidez es un escalar, mientras que la velocidad un vector. Al vector 𝐹 ′(𝑡) también se le llama vector tangente a la curva 𝐹 (𝑡) en t, y el vector
