Derivadas en biología
- Evelyn
- 13 feb 2017
- 1 Min. de lectura
En bioquímica, se usa mucho la función exponencial para, por ejemplo, describir la germinación de bacterias. La velocidad de germinación es la derivada.
La virulencia de cierta bacteria se mide en una escala de 0 a 50 y viene expresada por la función V(t)= 40+15t-9t2+t3, donde t es el tiempo(en horas) transcurrido desde que comienzo en estudio (t=0). Indicar los instantes de máxima y mínima virulencia en las 6 primeras horas y los intervalos en que esta crece y decrece.
Solución
Para que la función tenga un máximo o un mínimo la derivada debe ser cero.
V´(t)= 15-18t+3t2, igualando a 0, 3t2-18t+15=0
Simplificando t2-6t+5=0, cuyas soluciones son 5 y 1.
Ahora voy a ver quien es el máximo y quien el mínimo de la función, en el intervalo [0, 6], que tiene que estar entre estos dos valores junto o en los extremos del intervalo (por el teorema de Weirtrars).
Ordenamos la función V por comodidad, V(t)= t3-9t2+15t+40
V(0)=40
V(5)=125-225+75+40 =15
V(1)=1-9+15+40= 47
V(6)=216-324+90+40=22
La máxima virulencia es a las 1 horas y la mínima a las 5 horas.
Para ver los intervalos de crecimiento y decrecimiento estudiamos el signo de la derivada: V’(t)=3t2-18t+15
0 1 5 6
V’ + 0 – 0 +
Luego V crece desde 0 a 1 y desde 5 a 6, (crece en (0, 1) unión (5, 6) ) y decrece en el intervalo (1, 5)
Observando la gráfica de esta función vemos lo que

hemos deducido.
Comments