Derivadas parciales
- jhosue
- 19 feb 2017
- 1 Min. de lectura
En cálculo diferencial, una derivada parcial de una función de diversas variables, es la derivada respecto a cada una de esas variables manteniendo las otras como constantes. Las derivadas parciales son útiles en cálculo vectorial, geometría diferencial, física matemática, etc.
La derivada parcial de una función f respecto a la variable x se representa con cualquiera de las siguientes notaciones equivalentes:

Como las derivadas en una variable, las derivadas parciales están definidas como el límite. Donde U es un subconjunto abierto de Rn y f : U → R una función. Definimos derivada parcial de f en el punto a = (a1,..., an) ∈ U con respecto a la i-ésima variable xi como:

donde el vector v es el vector unitario del eje respecto al que se deriva xi.
Incluso si todas las derivadas parciales existen en el punto a, la función no necesariamente es continua en ese punto. Sin embargo, si todas las derivadas parciales existen alrededor de a y son continuas, entonces la función no sólo es continua sino además diferenciable cerca de a. En este caso, f es una función .