Tasa de variación instantánea. La derivada
- Evelyn
- 20 feb 2017
- 1 Min. de lectura
Consideremos un valor h (que puede ser positivo o negativo).
La tasa de variación media en el intervalo [a, a +h] sería .

Nos interesa medir la tasa instantánea, es decir el cambio cuando la h tiende a cero, es decir :

A este valor se le llama la derivada de la función f en el punto a y se designa por , por lo tanto, la derivada de una función en un punto es el límite de la tasa de variación media cuando el incremento de la variable tiende a 0.
=
Si f tiene derivada en el punto a se dice que f es derivable en a.

Observación 1. Si hacemos x =a +h , la derivada, en el punto a , también puede expresarse así:

Ejercicio 2. Hallar la derivada de la función f(x) = -x2 +4x el punto de abscisa x =1.
Observación 2. También se puede hablar de derivadas laterales, f ’+ y f -’ (obligatorio que f sea continua) según se considere el límite para h>0 o h<0. Si existen los dos límites laterales y coinciden la función es derivable.
Ejemplo 2.

Las derivadas laterales de la función en x =0 son 1 y –1.


Luego la función valor absoluto no es derivable en el 0.
Proposición. Toda. función derivable en un punto es continua en dicho punto.
El recíproco es falso.
Ejemplo 2. es continua en 0, pero no es derivable en 0.