Vista general de un campo vectorial
- derivadasparciales
- 21 feb 2017
- 2 Min. de lectura
En matemáticas, un campo vectorial representa la distribución espacial de una magnitud vectorial. Es una expresión de cálculo vectorial que asocia un vector a cada punto en el espacio euclidiano, de la forma
Los campos vectoriales se utilizan en física, por ejemplo, para representar la velocidad y la dirección de un fluido en el espacio, o la intensidad y la dirección de fuerzas como la gravitatoria o la fuerza electromagnética.
Como expresión matemática rigurosa, los campos vectoriales se definen en variedades diferenciales como secciones del fibrado tangente de la variedad. Este es el tipo de tratamiento necesario para modelizar el espacio-tiempo curvo de la teoría general de la relatividad por ejemplo.
Definición
Un campo vectorial sobre un subconjunto del espacio euclidiano es una función con valores vectoriales:
Un campo vectorial se puede visualizar como un espacio X con un vector n- dimensional unido a cada punto en X.
Derivación y potenciales escalares y vectores
Los campos vectoriales se deben comparar a los campos escalares, que asocian un número o escalar a cada punto en el espacio (o a cada punto de alguna variedad).
Las derivadas de un campo vectorial, que dan por resultado un campo escalar u otro campo vectorial, se llaman divergencia y rotor respectivamente. Recíprocamente:
Dado un campo vectorial cuyo rotacional se anula en un punto , existe un campo potencial escalar cuyo gradiente coincide con el campo escalar en un entorno de ese punto.
Dado un campo vectorial solenoidal cuya divergencia se anula en un punto, existe un campo vectorial llamado potencial vector cuyo rotacional coincide con el campo escalar en un entorno de ese punto.
Estas propiedades derivan del teorema de Poincaré.
Puntos estacionarios
El conjunto de todos los espacios vectoriales definidos sobre un subconjunto X, que son estacionarios en un determinado punto forman un subespacio vectorial del conjunto del espacio vectorial definido en la sección anterior.
Ejemplos
Un campo vectorial para el movimiento del aire en la tierra asociará a cada punto en la superficie de la tierra un vector con la velocidad y la dirección del viento en ese punto. Esto se puede dibujar usando flechas para representar el viento; la longitud (magnitud) de la flecha será una indicación de la velocidad del viento. Un "Alta" en la función usual de la presión barométrica actuaría así como una fuente (flechas saliendo), y un "Baja" será un sumidero (flechas que entran), puesto que el aire tiende a moverse desde las áreas de alta presión a las áreas de presión baja.
Véase también: Teorema de la bola peluda#Meteorología
Un campo de velocidad de un líquido móvil. En este caso, un vector de velocidad se asocia a cada punto en el líquido. En un túnel de viento, las líneas de campo se pueden revelar usando humo.
Campos magnéticos. Las líneas de campo se pueden revelar usando pequeñas limaduras de hierro.

Las ecuaciones de Maxwell permiten que utilicemos un conjunto dado de condiciones iniciales para deducir, para cada punto en el espacio euclidiano, una magnitud y una dirección para la fuerza experimentada por una partícula de prueba cargada en ese punto; el campo vectorial que resulta es el campo electromagnético.